skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balcerek, Michał"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Heterogeneous diffusion processes are prevalent in various fields, including the motion of proteins in living cells, the migratory movement of birds and mammals, and finance. These processes are often characterized by time-varying dynamics, where interactions with the environment evolve, and the system undergoes fluctuations in diffusivity. Moreover, in many complex systems anomalous diffusion is observed, where the mean square displacement (MSD) exhibits non-linear scaling with time. Among the models used to describe this phenomenon, fractional Brownian motion (FBM) is a widely applied stochastic process, particularly for systems exhibiting long-range temporal correlations. Although FBM is characterized by Gaussian increments, heterogeneous processes with FBM-like characteristics may deviate from Gaussianity. In this article, we study the non-Gaussian behavior of switching fractional Brownian motion (SFBM), a model in which the diffusivity of the FBM process varies while temporal correlations are maintained. To characterize non-Gaussianity, we evaluate the kurtosis, a common tool used to quantify deviations from the normal distribution. We derive exact expressions for the kurtosis of the considered heterogeneous anomalous diffusion process and investigate how it can identify non-Gaussian behavior. We also compare the kurtosis results with those obtained using the Hellinger distance, a classical measure of divergence between probability density functions. Through both analytical and numerical methods, we demonstrate the potential of kurtosis as a metric for detecting non-Gaussianity in heterogeneous anomalous diffusion processes. 
    more » « less
  2. Brownian motion in one or more dimensions is extensively used as a stochastic process to model natural and engineering signals, as well as financial data. Most works dealing with multidimensional Brownian motion consider the different dimensions as independent components. In this article, we investigate a model of correlated Brownian motion in R2, where the individual components are not necessarily independent. We explore various statistical properties of the process under consideration, going beyond the conventional analysis of the second moment. Our particular focus lies on investigating the distribution of turning angles. This distribution reveals particularly interesting characteristics for processes with dependent components that are relevant to applications in diverse physical systems. Theoretical considerations are supported by numerical simulations and analysis of two real-world datasets: the financial data of the Dow Jones Industrial Average and the Standard and Poor’s 500, and trajectories of polystyrene beads in water. Finally, we show that the model can be readily extended to trajectories with correlations that change over time. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract The stochastic trajectories of molecules in living cells, as well as the dynamics in many other complex systems, often exhibit memory in their path over long periods of time. In addition, these systems can show dynamic heterogeneities due to which the motion changes along the trajectories. Such effects manifest themselves as spatiotemporal correlations. Despite the broad occurrence of heterogeneous complex systems in nature, their analysis is still quite poorly understood and tools to model them are largely missing. We contribute to tackling this problem by employing an integral representation of Mandelbrot’s fractional Brownian motion that is compliant with varying motion parameters while maintaining long memory. Two types of switching fractional Brownian motion are analysed, with transitions arising from a Markovian stochastic process and scale-free intermittent processes. We obtain simple formulas for classical statistics of the processes, namely the mean squared displacement and the power spectral density. Further, a method to identify switching fractional Brownian motion based on the distribution of displacements is described. A validation of the model is given for experimental measurements of the motion of quantum dots in the cytoplasm of live mammalian cells that were obtained by single-particle tracking. 
    more » « less